3.769 \(\int \frac {x^7}{(a+b x^4) (c+d x^4)} \, dx\)

Optimal. Leaf size=53 \[ \frac {c \log \left (c+d x^4\right )}{4 d (b c-a d)}-\frac {a \log \left (a+b x^4\right )}{4 b (b c-a d)} \]

[Out]

-1/4*a*ln(b*x^4+a)/b/(-a*d+b*c)+1/4*c*ln(d*x^4+c)/d/(-a*d+b*c)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {446, 72} \[ \frac {c \log \left (c+d x^4\right )}{4 d (b c-a d)}-\frac {a \log \left (a+b x^4\right )}{4 b (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[x^7/((a + b*x^4)*(c + d*x^4)),x]

[Out]

-(a*Log[a + b*x^4])/(4*b*(b*c - a*d)) + (c*Log[c + d*x^4])/(4*d*(b*c - a*d))

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^7}{\left (a+b x^4\right ) \left (c+d x^4\right )} \, dx &=\frac {1}{4} \operatorname {Subst}\left (\int \frac {x}{(a+b x) (c+d x)} \, dx,x,x^4\right )\\ &=\frac {1}{4} \operatorname {Subst}\left (\int \left (-\frac {a}{(b c-a d) (a+b x)}+\frac {c}{(b c-a d) (c+d x)}\right ) \, dx,x,x^4\right )\\ &=-\frac {a \log \left (a+b x^4\right )}{4 b (b c-a d)}+\frac {c \log \left (c+d x^4\right )}{4 d (b c-a d)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 43, normalized size = 0.81 \[ -\frac {a d \log \left (a+b x^4\right )-b c \log \left (c+d x^4\right )}{4 b^2 c d-4 a b d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/((a + b*x^4)*(c + d*x^4)),x]

[Out]

-((a*d*Log[a + b*x^4] - b*c*Log[c + d*x^4])/(4*b^2*c*d - 4*a*b*d^2))

________________________________________________________________________________________

fricas [A]  time = 1.34, size = 42, normalized size = 0.79 \[ -\frac {a d \log \left (b x^{4} + a\right ) - b c \log \left (d x^{4} + c\right )}{4 \, {\left (b^{2} c d - a b d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^4+a)/(d*x^4+c),x, algorithm="fricas")

[Out]

-1/4*(a*d*log(b*x^4 + a) - b*c*log(d*x^4 + c))/(b^2*c*d - a*b*d^2)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 51, normalized size = 0.96 \[ -\frac {a \log \left ({\left | b x^{4} + a \right |}\right )}{4 \, {\left (b^{2} c - a b d\right )}} + \frac {c \log \left ({\left | d x^{4} + c \right |}\right )}{4 \, {\left (b c d - a d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^4+a)/(d*x^4+c),x, algorithm="giac")

[Out]

-1/4*a*log(abs(b*x^4 + a))/(b^2*c - a*b*d) + 1/4*c*log(abs(d*x^4 + c))/(b*c*d - a*d^2)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 50, normalized size = 0.94 \[ \frac {a \ln \left (b \,x^{4}+a \right )}{4 \left (a d -b c \right ) b}-\frac {c \ln \left (d \,x^{4}+c \right )}{4 \left (a d -b c \right ) d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(b*x^4+a)/(d*x^4+c),x)

[Out]

-1/4*c/(a*d-b*c)/d*ln(d*x^4+c)+1/4*a/(a*d-b*c)/b*ln(b*x^4+a)

________________________________________________________________________________________

maxima [A]  time = 0.62, size = 49, normalized size = 0.92 \[ -\frac {a \log \left (b x^{4} + a\right )}{4 \, {\left (b^{2} c - a b d\right )}} + \frac {c \log \left (d x^{4} + c\right )}{4 \, {\left (b c d - a d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^4+a)/(d*x^4+c),x, algorithm="maxima")

[Out]

-1/4*a*log(b*x^4 + a)/(b^2*c - a*b*d) + 1/4*c*log(d*x^4 + c)/(b*c*d - a*d^2)

________________________________________________________________________________________

mupad [B]  time = 5.10, size = 51, normalized size = 0.96 \[ -\frac {a\,\ln \left (b\,x^4+a\right )}{4\,b^2\,c-4\,a\,b\,d}-\frac {c\,\ln \left (d\,x^4+c\right )}{4\,a\,d^2-4\,b\,c\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/((a + b*x^4)*(c + d*x^4)),x)

[Out]

- (a*log(a + b*x^4))/(4*b^2*c - 4*a*b*d) - (c*log(c + d*x^4))/(4*a*d^2 - 4*b*c*d)

________________________________________________________________________________________

sympy [B]  time = 60.85, size = 144, normalized size = 2.72 \[ \frac {a \log {\left (x^{4} + \frac {\frac {a^{3} d^{2}}{b \left (a d - b c\right )} - \frac {2 a^{2} c d}{a d - b c} + \frac {a b c^{2}}{a d - b c} + 2 a c}{a d + b c} \right )}}{4 b \left (a d - b c\right )} - \frac {c \log {\left (x^{4} + \frac {- \frac {a^{2} c d}{a d - b c} + \frac {2 a b c^{2}}{a d - b c} + 2 a c - \frac {b^{2} c^{3}}{d \left (a d - b c\right )}}{a d + b c} \right )}}{4 d \left (a d - b c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(b*x**4+a)/(d*x**4+c),x)

[Out]

a*log(x**4 + (a**3*d**2/(b*(a*d - b*c)) - 2*a**2*c*d/(a*d - b*c) + a*b*c**2/(a*d - b*c) + 2*a*c)/(a*d + b*c))/
(4*b*(a*d - b*c)) - c*log(x**4 + (-a**2*c*d/(a*d - b*c) + 2*a*b*c**2/(a*d - b*c) + 2*a*c - b**2*c**3/(d*(a*d -
 b*c)))/(a*d + b*c))/(4*d*(a*d - b*c))

________________________________________________________________________________________